It’s a miracle(berry)!

There’s a molecule called miraculin and as the name suggests, it’s quite miraculous. The molecule is a glycoprotein, meaning it has both amino acids (the building blocks of proteins) and oligosaccharides (sugars). It’s extracted from the fruit of the Synsepalum dulcificum plant, which is native to West Africa.

Even though the molecule is part-sugar, it does not taste sweet. But it does something funky with your taste buds: if you eat a miracle berry and thus expose your tongue to miraculin, the molecule binds to the sweetness receptors. If you then eat something sour, it will taste sweet instead.

The exact mechanism is still unknown, but the molecule changes your taste perception by ensuring sweetness receptors are activated by acids. For about an hour, sour-tasting foods are weirdly sweet.

Now you can buy a “strip” of miracle berry pills, which comes with a ticket for a “flavor trip” and looks a little bit like drugs.

A ticket for "Flavour Tripping"
One trip to flavor town, please (adapted from here because I forgot to take a picture.)

Putting the miracle to the test

Guess what we did? Of course, we put it to the test!

Sour foods: balsamic vinegar, sour cream, strawberries, orange slices, lemon slices, lime slices, tomato slices, granny smith apples, chili pepper and cream cheese.
On the menu: everything sour

As promised, everything sour tasted sweet! Here’s an overview of what we tried:

  • Balsamic vinegar already has some sweetness to it, but with miraculin there was nothing sour to taste. Even though my mouth was still reacting to the acid, I could not taste it! On another occasion, I had also tasted white vinegar, which really burned my tongue even though it didn’t taste sour.
  • The citrus fruits all tasted like a very sweet orange! Almost unbearably sweet, to be honest. Lemon juice (the kind that comes in a bottle) tasted like a lemon candy: a little sour but with enough sweetness to easily take a shot.
  • The Granny Smith apple slices tasted like a non-Granny-Smith apple, as you might expect.
  • Strawberries tasted like you’ve put some extra sugar on them, which I can tell you is quite delicious. Even more delicious: a strawberry with some cream cheese. Instant strawberry cheese cake! And a strawberry with sour cream that tastes just like whipped cream? Yum!
Strawberry and a dollop of cream cheese
100x better than what you can buy at the cheesecake factory.
  • The tomato wasn’t really that special.
  • A kiwi tasted like a golden kiwi, which already tastes softer and sweeter than a green kiwi. Makes total sense.
  • Bitter flavors are also changed. For example, tonic water tastes pretty much like sprite. And grapefruit tastes sweet, though you can still “feel” the bitterness.
  • Finally, spicy things change taste too. A nibble from a chilli pepper made my mouth burn but without tasting the burn. Weird.

It was a very interesting experience, or flavor trip if you will. But as a fan of sour – I always eat the slice of lime or lemon in my drink – I prefer the world being a little less sweet.

Because you made it to the end, here’s a bonus: a stupid picture of me eating a very sweet-tasting lemon!


Death Stare for Gullie

It’s happened to me. I’m sitting, calmly enjoying a sandwich outside on a bench, and then …

A seagull swoops in and tries to steal my food.

It’s terrifying. Seagulls are scary, especially up close and especially in Dundee, where I used to live and frequently sit outside eating something or the other. They have mean eyes.

I remember the seagulls in Dundee being quite peculiar. An anecdote: I was walking along the sidewalk, edging close to a corner where a seagull was digging through a ripped trash bag. When I was a few meters away, the seagull looked up and did this little walk away from the bag, pretending as if they weren’t just digging through trash. After I passed the corner, I glanced back and saw that they’d done a u-turn and went back to digging.

Okay, maybe I’m giving the bird too much of a personality. But it was weird.

Back to the food stealing; a research conducted at the University of Exeter showed that if you stare at a gull, it is less likely to steal your chips (for US readers: french fries which are totally not from France but from Belgium and stop calling things the wrong name and, never mind, I’m okay).

Granted, the study had a limited scope. They tried to test 74 gulls, but more than half of them flew away. And it is likely that a lot of seagull related crime is due to a few bad seeds and most seagulls are perfectly happy leaving you and your food alone and digging through trash for snacks.

Nevertheless, seagulls that were “looked at” while they were approaching food, were a lot less likely to touch that food. In fact, only a quarter of seagulls that were being watched while they tried to approach and eat food actually touched the food.

Maybe they were just scared of getting caught while committing food theft. Maybe they hate the color of our eyes. Maybe our stare is truly terrifying (I certainly know a few people with a scary stare). But next time you see a seagull approaching your food, give them the death stare. Perhaps your meal will be saved.

Come at me bro


Baking vs cell biology

Recently, I have learned that baking sourdough bread is very similar to maintaining cell culture. Lately, the conversations I’ve been having with my dad remind me very much of the conversations I used to have when I was still actively maintaining a cell line in the lab.

This inspired me to take out my drawing notebook and fail at sketching this concept:

IMG_20180913_095325 (1).jpg

If you would like to start up your own sourdough bread culture, basically, you just take some flour (50 g, apparently rye works pretty well) and add the same amount of water and leave this on your kitchen counter. For a week or so, mix in a tablespoon of flour and a tablespoon of water. Over time, this mixture will become alive with a culture of bacteria (the good kind) and yeast (the good kind) that you can then use to bake bread. Basically, if you take out some of this starter mixture for your bread, and supplement whatever you took out with new flour+water, you can keep this “culture” going in the fridge and bake bread until infinity. (For details, the internet has lots of examples of how to start up your own sourdough and subsequent bread recipes, for example, this one)

A little bit like culturing cells in the incubator until infinity.

And if you mess up (like accidentally use all your starter), you can either start over or take some out of the freezer (if you’ve frozen some down at some point, obviously). For cells, you’d take some out of the -80C.

So you see, similarities are endless!

Whatever you do, don’t talk about your cells/yeast like it’s a pet. It weirds people out (trust me).



* The calculation bit is about things that are actually pretty simple but somehow are complicated to explain.

Also, I should note that my dad isn’t really that bald, I just can’t draw hair (sorry!). Also, you’re supposed to tie up your hair when working with cell culture.

This is why I usually don’t draw stuff, people.

An ignobel cause

Disclaimer: if you’re a bit hungry and/or know that reading about spaghetti will make you hungry, I suggest you go eat some spaghetti before you continue reading… But if you do, keep at least a few strands uncooked, you might need it later on.

An odd article popped up on my go-to news site the other day. And then the day after that, an article on the same topic popped up in the newspaper I was reading. It was an article reporting on the science of breaking an uncooked spaghetti.

No, I’m not joking.

And apparently, the research solves a decade-old problem. I never knew spaghetti could pose a decade-old problem, except for maybe the secret spaghetti-sauce recipe of an Italian-American family but that’s a century-old problem, I would say.

So if you’d go into your kitchen now, take a strand of uncooked spaghetti, hold it at the ends, and start bending it until it snaps, you will see what this mystery is all about. Most probably, you have now ended up with three or more bits of spaghetti. If you are super bored or think snapping spaghetti is super-fun (this is what Richard Feynman apparently thought), you can try it again. And you will notice the spaghetti almost never snaps into two pieces. Or you can just take my word for it…

In 2005, some French physicists came up with a theoretical solution to why spaghetti never breaks into two, because this unsolved mystery Richard Feynman broke his head about merited some further research…

When a very thin bar (or strand of spaghetti) is being bent, this will cause the strand to break somewhere near the middle. This first break will cause a “snap-back” effect which essentially causes a vibration to travel through the rest of the strand, causing even more points of fracture, which results in three or more pieces. In other words, is very rare to end up with exactly two pieces of spaghetti.

These French researchers were rewarded with an Ig Nobel prize for their finding. An Ig Nobel prize is a prize that is rewarded “for achievements that first make people LAUGH then make them THINK” and also the reason for my best quiz achievement ever.*

Experiments (above) and simulations (below) show how dry spaghetti can be broken into two or more fragments, by twisting and bending. (Image: MIT)

And now, years later, mathematicians from MIT have added to that research by coming up with a way to ensure a dry spaghetti strand does break exactly in two: by first twisting the spaghetti before bending it. The twisting part causes stresses in the spaghetti strand that counteract the snapback effect when it eventually breaks. When the spaghetti does break in to, the energy release from a “twist wave” (where the spaghetti pieces untwist themselves) ensures there is no extra stress that would cause more fracture points. So there we go: the spaghetti breaks in exactly two pieces as long as you twist it enough.

Experiments (above) and simulations (below) show how dry spaghetti can be broken into two or more fragments, by twisting and bending. (Image: MIT)

Now, this theory isn’t only limited to breaking spaghetti. Understanding stress distributions and breaking cascade also have some practical applications, according to the authors: the same principles can be applied to other thin bar-like structures, such as multifibers, nanotubes, and microtubules.

Now, if you haven’t already, go get yourself some spaghetti.


* The question: who has one both an Ig Nobel and a Nobel prize and for what?
The whole table looked very confused and I just said very confidently “André Geim, levitating a frog and graphene” so it turns out a degree in nanotech is super useful for winning quizzes. (Actually, I’m not even sure we won and I doubt it was thanks to me answering that one question correctly, but I’m pretty sure I will never live up to that moment ever again.)